Multispectral imaging via luminescent down-shifting with colloidal quantum dots
نویسندگان
چکیده
The high infrared quantum yield, continuous absorption spectrum, and band edge tunability of colloidal quantum dots (QD) has opened up new opportunities to use luminescent down shifting for multispectral imaging in the infrared. We demonstrate a QD sensitized short wavelength infrared (SWIR) camera which is capable of UV-SWIR multispectral imaging. The application of multispectral cameras for UV tagging applications is demonstrated and the extension of this technology to the mid infrared spectral region is discussed. ©2013 Optical Society of America OCIS codes: (040.0040) Detectors; (040.3060) Infrared; (160.2540) Fluorescent and luminescent materials; (250.5590) Quantum-well, -wire and -dot devices; References and Links 1. D. F. King, W. A. Radford, E. A. Patten, R. W. Graham, T. F. McEwan, J. G. Vodicka, R. E. Bornfreund, P. M. Goetz, G. M. Venzor, S. M. Johnson, J. E. Jensen, B. Z. Nosho, and J. A. Roth, “3rd generation 1280 x 720 FPA development status at Raytheon Vision Systems,” Proc. SPIE 6206, 62060W (2006). 2. T. Martin, R. Brubaker, P. Dixon, M.-A. Gagliardi, and T. Sudol, “640x512 InGaAs focal plane array camera for visible and SWIR imaging,” Proc. SPIE 5783, 12–20 (2005). 3. W. A. Cabanski, R. Breiter, K.-H. Mauk, W. Rode, and J. Ziegler, “Broadband and dual-color high-speed MCT MWIR modules,” Proc. SPIE 4721, 174–183 (2002). 4. J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne Imaging Sensors: infrared imaging technologies for astronomy and civil space,” Proc. SPIE 7021, 70210H 2008). 5. S. M. Geyer, J. M. Scherer, N. Moloto, F. B. Jaworski, and M. G. Bawendi, “Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications,” ACS Nano 5(7), 5566–5571 (2011). 6. S. M. Geyer, J. M. Scherer, M. G. Bawendi, and F. Jaworski, “Dual Band UV-SWIR imaging via luminescent down-shifting with colloidal quantum dots,” SPIE Nano (2013). 7. G. Naletto, E. Pace, L. Placentino, and G. Tondello, “Fluorescence of metachrome in the farand vacuumultraviolet spectral region,” Proc. SPIE 2519, 31–38 (1995). 8. L. Placentino, E. Pace, G. Naletto, and G. Tondello, “Performances of metachrome II as a scintillator for the far and vacuum ultraviolet spectral region,” Opt. Eng. 35(11), 3342–3347 (1996). 9. S. B. Howell, Handbook of CCD Astronomy (Cambridge University Press, 2006). 10. A. M. Brouwer, “Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report),” Pure Appl. Chem. 83(12), 2213–2228 (2011). 11. O. E. Semonin, J. C. Johnson, J. M. Luther, A. G. Midgett, A. J. Nozik, and M. C. Beard, “Absolute photoluminescence quantum yields of IR-26 dye, PbS, and PbSe quantum dots,” J. Phys. Chem. Lett. 1(16), 2445–2450 (2010). 12. B. L. Wehrenberg, C. Wang, and P. Guyot-Sionnest, “Interband and intraband optical studies of PbSe colloidal quantum dots,” J. Phys. Chem. B 106(41), 10634–10640 (2002). 13. Spectrum from IRE-640BB by Sofradir EC Inc. 14. A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popovic, B. J. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. 3(6), 2028–2034 (2012). 15. D. M. Reilly, D. T. Moriarty, and J. A. Maynard, “Unique properties of solar blind ultraviolet communication systems for unattended ground-sensor networks,” Proc. SPIE 5611, 244–254 (2004). 16. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett. 9(7), 2532–2536 (2009). #192398 $15.00 USD Received 17 Jun 2013; revised 18 Jul 2013; accepted 18 Jul 2013; published 29 Jul 2013 (C) 2013 OSA 1 August 2013 | Vol. 3, No. 8 | DOI:10.1364/OME.3.001167 | OPTICAL MATERIALS EXPRESS 1167 17. J. Kundu, Y. Ghosh, A. M. Dennis, H. Htoon, and J. A. Hollingsworth, “Giant nanocrystal quantum dots: stable down-conversion phosphors that exploit a large stokes shift and efficient shell-to-core energy relaxation,” Nano Lett. 12(6), 3031–3037 (2012). 18. R. G. Aswathy, Y. Yoshida, T. Maekawa, and D. S. Kumar, “Near-infrared quantum dots for deep tissue imaging,” Anal. Bioanal. Chem. 397(4), 1417–1435 (2010). 19. J. M. Pietryga, R. D. Schaller, D. Werder, M. H. Stewart, V. I. Klimov, and J. A. Hollingsworth, “Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots,” J. Am. Chem. Soc. 126(38), 11752– 11753 (2004). 20. D. K. Harris, P. M. Allen, H.-S. Han, B. J. Walker, J. Lee, and M. G. Bawendi, “Synthesis of cadmium arsenide quantum dots luminescent in the infrared,” J. Am. Chem. Soc. 133(13), 4676–4679 (2011). 21. M. Yarema and M. V. Kovalenko, “Colloidal synthesis of InSb nanocrystals with controlled polymorphism using indium and antimony amides,” Chem. Mater. 25(9), 1788–1792 (2013). 22. S. Keuleyan, E. Lhuillier, and P. Guyot-Sionnest, “Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection,” J. Am. Chem. Soc. 133(41), 16422–16424 (2011). 23. M. Carmody, J. G. Pasko, D. Edwall, M. Daraselia, L. A. Almeida, J. Molstad, J. H. Dinan, J. K. Markunas, Y. Chen, G. Brill, and N. K. Dhar, “Long wavelength infrared, molecular beam epitaxy, HgCdTe-on-Si diode performance,” J. Electron. Mater. 33(6), 531–537 (2004). 24. H. Liu and P. Guyot-Sionnest, “Photoluminescence lifetime of lead selenide colloidal quantum dots,” J. Phys. Chem. C 114(35), 14860–14863 (2010). 25. O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013). 26. Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc. 130(15), 5026–5027 (2008). 27. W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. K. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc. 134(49), 20160–20168 (2012). 28. M. V. Kovalenko, M. Scheele, and D. V. Talapin, “Colloidal nanocrystals with molecular metal chalcogenide surface ligands,” Science 324(5933), 1417–1420 (2009). 29. E. Lhuillier, S. Keuleyan, P. Zolotavin, and P. Guyot-Sionnest, “Mid-infrared HgTe/As2S3 field effect transistors and photodetectors,” Adv. Mater. 25(1), 137–141 (2013). 30. M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, and D. V. Talapin, “Inorganically functionalized PbSCdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties,” J. Am. Chem. Soc. 134(5), 2457–2460 (2012). 31. S. Novak, L. Scarpantonio, J. Novak, M. D. Prè, A. Martucci, J. D. Musgraves, N. D. McClenaghan, and K. Richardson, “Incorporation of luminescent CdSe/ZnS core-shell quantum dots and PbS quantum dots into solution-derived chalcogenide glass films,” Opt. Mater. Express 3(6), 729–738 (2013). 32. Y. Liu, J. Tolentino, M. Gibbs, R. Ihly, C. L. Perkins, Y. Liu, N. Crawford, J. C. Hemminger, and M. Law, “PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm V s,” Nano Lett. 13(4), 1578–1587 (2013).
منابع مشابه
Spectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging
Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...
متن کاملPotential clinical applications of quantum dots
The use of luminescent colloidal quantum dots in biological investigations has increased dramatically over the past several years due to their unique size-dependent optical properties and recent advances in biofunctionalization. In this review, we describe the methods for generating high-quality nanocrystals and report on current and potential uses of these versatile materials. Numerous example...
متن کاملEffect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells
Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-oc...
متن کاملA new class of fluorescent-dots: long luminescent lifetime bio-dots self-assembled from DNA at low temperatures
Quantum-dots (QDs) have fuelled up intensive research efforts over the past two decades. Nevertheless, currently developed two classes of fluorescent QDs, colloidal semiconductor QDs and carbonaceous QDs suffer from either toxicity or short luminescence lifetime. Here, we report a new class of fluorescent bio-dots that are derived from DNA via self-assembly at low temperatures down to 80°C, whi...
متن کاملUse of Luminescent CdSe–ZnS Nanocrystal Bioconjugates in Quantum Dot-Based Nanosensors
Biomolecules labeled with luminescent colloidal semiconductor quantum dots (QDs) have potential for use in numerous applications, including fluoro-immunoassays and biological imaging. QD labels exhibit size-tunable narrow-band luminescent emission and high resistance to photodegradation. They also exhibit efficient Förster energy transfer between neighboring QDs of different sizes and their emi...
متن کامل